23 hours ago
my attempt to do the exercises in sicp.
Tuesday, July 29, 2008
sicp exercise 2.70
;; Exercise 2.70. The following eight-symbol alphabet with associated relative frequencies was designed to efficiently encode the lyrics of 1950s rock songs. (Note that the ``symbols'' of an ``alphabet'' need not be individual letters.)
;; A 2 NA 16
;; BOOM 1 SHA 3
;; GET 2 YIP 9
;; JOB 2 WAH 1
;; Use generate-huffman-tree (exercise 2.69) to generate a corresponding Huffman tree, and use encode (exercise 2.68) to encode the following message:
;; Get a job
;; Sha na na na na na na na na
;; Get a job
;; Sha na na na na na na na na
;; Wah yip yip yip yip yip yip yip yip yip
;; Sha boom
;; How many bits are required for the encoding? What is the smallest number of bits that would be needed to encode this song if we used a fixed-length code for the eight-symbol alphabet?
(define (make-leaf symbol weight)
(list 'leaf symbol weight))
(define (leaf? object)
(eq? (car object) 'leaf))
(define (symbol-leaf x) (cadr x))
(define (weight-leaf x) (caddr x))
(define (make-code-tree left right)
(list left
right
(append (symbols left) (symbols right))
(+ (weight left) (weight right))))
(define (left-branch tree) (car tree))
(define (right-branch tree) (cadr tree))
(define (symbols tree)
(if (leaf? tree)
(list (symbol-leaf tree))
(caddr tree)))
(define (weight tree)
(if (leaf? tree)
(weight-leaf tree)
(cadddr tree)))
(define (adjoin-set x set)
(cond ((null? set) (list x))
((< (weight x) (weight (car set))) (cons x set))
(else (cons (car set)
(adjoin-set x (cdr set))))))
(define (make-leaf-set pairs)
(if (null? pairs)
'()
(let ((pair (car pairs)))
(adjoin-set (make-leaf (car pair) ; symbol
(cadr pair)) ; frequency
(make-leaf-set (cdr pairs))))))
(define (successive-merge leaf-set)
(cond ((null? leaf-set) (list))
((null? (cdr leaf-set)) (car leaf-set))
(else (successive-merge (adjoin-set (make-code-tree (car leaf-set)
(cadr leaf-set))
(cddr leaf-set))))))
(define (generate-huffman-tree pairs)
(successive-merge (make-leaf-set pairs)))
(define false #f)
(define true #t)
(define (encode message tree)
(if (null? message)
'()
(append (encode-symbol (car message) tree)
(encode (cdr message) tree))))
(define (encode-symbol symbol tree)
(define (encode-symbol-iter symbol sub-tree)
(cond ((leaf? sub-tree) (list))
((element-of? symbol (symbols (left-branch sub-tree)))
(cons '0 (encode-symbol-iter symbol (left-branch sub-tree))))
((element-of? symbol (symbols (right-branch sub-tree)))
(cons '1 (encode-symbol-iter symbol (right-branch sub-tree))))
(else (error "error not present"))))
(if (element-of? symbol (symbols tree))
(encode-symbol-iter symbol tree)
(error "error not present")))
(define (element-of? symbol set)
(cond ((null? set) false)
((eq? symbol (car set)) true)
(else (element-of? symbol (cdr set)))))
(define pairs '((a 2) (na 16) (boom 1) (Sha 3) (Get 2) (yip 9) (job 2) (Wah 1)))
(define message '(Get a job Sha na na na na na na na na Get a job Sha na na na na na na na na Wah yip yip yip yip yip yip yip yip yip Sha boom))
(define huff-tree (generate-huffman-tree pairs))
(display huff-tree) (newline)
(define encoded-message (encode message huff-tree))
(display message) (newline)
(display encoded-message) (newline)
;; number of bits with huffman encoding = 84
;; number of bits with fixed-length encoding = 108
(define (decode bits tree)
(define (decode-1 bits current-branch)
(if (null? bits)
'()
(let ((next-branch
(choose-branch (car bits) current-branch)))
(if (leaf? next-branch)
(cons (symbol-leaf next-branch)
(decode-1 (cdr bits) tree))
(decode-1 (cdr bits) next-branch)))))
(decode-1 bits tree))
(define (choose-branch bit branch)
(cond ((= bit 0) (left-branch branch))
((= bit 1) (right-branch branch))
(else (error "bad bit -- CHOOSE-BRANCH" bit))))
(define decoded-message (decode encoded-message huff-tree))
(display decoded-message) (newline)
;; decoding also works :-)
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment