; Exercise 1.39. A continued fraction representation of the tangent function was published in 1770
; by the German mathematician J.H. Lambert:
;
; where x is in radians. Define a procedure (tan-cf x k) that computes an approximation to the; tangent function based on Lambert's formula. K specifies the number of terms to compute, as
; in exercise 1.37.
(define (cont-frac-iter n d k)
(define (iter i result)
(if (= i 0)
result
(iter (- i 1) (/ (n i) (+ (d i) result)))))
(iter k 0))
(define (square y) (* y y))
(define (tan x k)
(define N (square x))
(define (n i) (if (= i 1) x (- N)))
(define (d i) (- (* i 2) 1))
(cont-frac-iter n d k))
(define pi 3.141592653589793116)
(display (tan (/ pi 4) 100)) (newline)
(display (tan (/ pi 2) 100)) (newline)
No comments:
Post a Comment