my attempt to do the exercises in sicp.

Wednesday, August 13, 2008

sicp exercise 2.84


;; Exercise 2.84.  Using the raise operation of exercise 2.83, modify the apply-generic procedure so that it coerces its arguments to have the same type by the method of successive raising, as discussed in this section. You will need to devise a way to test which of two types is higher in the tower. Do this in a manner that is ``compatible'' with the rest of the system and will not lead to problems in adding new levels to the tower.

;; 1. get the highest type from the list of data types
;; 2. make a list of the highest type
;; 3. find the operation for that list of types
;; 4. if operation is found, prepare list of raised arguments
;; 5. apply the operation


(define (get-highest-type args)
  (define (higher-type? num1 num2)
    (let ((type1 (type num1))
          (type2 (type num2)))
      (if (eq? type1 type2)
          num2
          (let ((raise-proc (get 'raise (list type1))))
            (if (null? raise-proc)
                num1
                (higher-type? (raise-proc (contents num1)) num2))))))
  (define (iter num rest-num)
    (cond ((null? rest-num) num)
          (else (iter (higher-type? num (car rest-num))
                      (cdr rest-num)))))
  (cond ((null? args) (error "ERROR"))
        ((null? (cdr args)) (car args))
        (else (type (iter (car args) (cdr args))))))

(define (raise-args highest-type args)
  (define (raise-to-type num)
    (if (eq? (type num) highest-type)
        num
        (raise-to-type (raise num))))
  (map raise-to-type args))

(define (apply-generic op . param)
  (define (apply-generic-raised)
    (let ((highest-type (get-highest-type param)))
      (let ((highest-type-args (map (lambda(x) highest-type) param)))
        (let ((proc (get op highest-type-args)))
          (if (null? proc) (error "no matching operation for types"
                                   highest-type-args)
              (apply proc (map contents (raise-args highest-type param))))))))
  (let ((type-tags (map type param)))
    (let ((proc (get op type-tags)))
      (if (not (null? proc)) (apply proc (map contents param))
          (apply-generic-raised)))))


;;
;; testing
;;


(define (square x) (* x x))
(define *op-table* (make-hash-table 10))
(define (put op type proc)
  (hash-set! *op-table* (list op type) proc))
(define (get op type)
  (hash-ref *op-table* (list op type) '()))


(define (attach-tag tag oper)
  (if (number? oper) oper
      (list tag oper)))

(define (type data)
  (if (number? data) 'scheme-number
      (car data)))

(define (contents data)
  (if (number? data) data
      (cadr data)))

(define (add x y) (apply-generic 'add x y))
(define (sub x y) (apply-generic 'sub x y))
(define (mul x y) (apply-generic 'mul x y))
(define (div x y) (apply-generic 'div x y))
(define (=zero? x) (apply-generic '=zero? x))
(define (raise x) (apply-generic 'raise x))

(define (install-scheme-number-package)
  (define (tag x)
    (attach-tag 'scheme-number x))   
  (put 'add '(scheme-number scheme-number)
       (lambda (x y) (tag (+ x y))))
  (put 'sub '(scheme-number scheme-number)
       (lambda (x y) (tag (- x y))))
  (put 'mul '(scheme-number scheme-number)
       (lambda (x y) (tag (* x y))))
  (put 'div '(scheme-number scheme-number)
       (lambda (x y) (tag (/ x y))))
  (put 'make 'scheme-number
       (lambda (x) (tag x)))
  (put 'eq? '(scheme-number scheme-number)
       (lambda(x y)(= x y)))
  (put '=zero? '(scheme-number)
       (lambda(x)(= x 0)))
  (put 'raise '(scheme-number)
       (lambda(x)(make-rational x 1)))
  'done)

(define (make-scheme-number n)
  ((get 'make 'scheme-number) n))

(define (install-rational-package)
  ;; internal procedures
  (define (numer x) (car x))
  (define (denom x) (cdr x))
  (define (make-rat n d)
    (let ((g (gcd n d)))
      (cons (/ n g) (/ d g))))
  (define (add-rat x y)
    (make-rat (+ (* (numer x) (denom y))
                 (* (numer y) (denom x)))
              (* (denom x) (denom y))))
  (define (sub-rat x y)
    (make-rat (- (* (numer x) (denom y))
                 (* (numer y) (denom x)))
              (* (denom x) (denom y))))
  (define (mul-rat x y)
    (make-rat (* (numer x) (numer y))
              (* (denom x) (denom y))))
  (define (div-rat x y)
    (make-rat (* (numer x) (denom y))
              (* (denom x) (numer y))))
  (define (eq? x y)
    (and (= (numer x) (numer y))
         (= (denom x) (denom y))))
  (define (=zero? x)
    (= (numer x) 0))
  (define (raise x)
    (make-complex-from-real-imag (/ (numer x) (denom x)) 0))
  ;; interface to rest of the system
  (define (tag x) (attach-tag 'rational x))
  (put 'add '(rational rational)
       (lambda (x y) (tag (add-rat x y))))
  (put 'sub '(rational rational)
       (lambda (x y) (tag (sub-rat x y))))
  (put 'mul '(rational rational)
       (lambda (x y) (tag (mul-rat x y))))
  (put 'div '(rational rational)
       (lambda (x y) (tag (div-rat x y))))
  (put 'eq? '(rational rational) eq?)
  (put '=zero? '(rational) =zero?)
  (put 'raise  '(rational) raise)
  (put 'make 'rational
       (lambda (n d) (tag (make-rat n d))))
  'done)

(define (make-rational n d)
  ((get 'make 'rational) n d))

(define (install-rectangular-package)
  ;; internal procedures
  (define (real-part z) (car z))
  (define (imag-part z) (cdr z))
  (define (make-from-real-imag x y) (cons x y))
  (define (magnitude z)
    (sqrt (+ (square (real-part z))
             (square (imag-part z)))))
  (define (angle z)
    (atan (imag-part z) (real-part z)))
  (define (make-from-mag-ang r a)
    (cons (* r (cos a)) (* r (sin a))))
  (define (eq? z1 z2)
    (and (= (real-part z1) (real-part z2))
         (= (imag-part z1) (imag-part z2))))
  (define (=zero? z)
    (and (= (real-part z) 0)
         (= (imag-part z) 0)))
  ;; interface to the rest of the system
  (define (tag x) (attach-tag 'rectangular x))
  (put 'real-part '(rectangular) real-part)
  (put 'imag-part '(rectangular) imag-part)
  (put 'magnitude '(rectangular) magnitude)
  (put 'angle '(rectangular) angle)
  (put 'make-from-real-imag 'rectangular
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'rectangular
       (lambda (r a) (tag (make-from-mag-ang r a))))
  (put 'eq?    '(rectangular rectangular) eq?)
  (put '=zero? '(rectangular) =zero?)
  'done)

(define (real-part z)
  (apply-generic 'real-part z))
(define (imag-part z)
  (apply-generic 'imag-part z))

(define (install-polar-package)
  ;; internal procedures
  (define (magnitude z) (car z))
  (define (angle z) (cdr z))
  (define (make-from-mag-ang r a) (cons r a))
  (define (real-part z)
    (* (magnitude z) (cos (angle z))))
  (define (imag-part z)
    (* (magnitude z) (sin (angle z))))
  (define (make-from-real-imag x y)
    (cons (sqrt (+ (square x) (square y)))
          (atan y x)))
  (define (eq? z1 z2)
    (and (= (magnitude z1) (magnitude z2))
         (= (angle z1) (angle z2))))
  (define (=zero? z)
    (= (magnitude z) 0))
  ;; interface to the rest of the system
  (define (tag x) (attach-tag 'polar x))
  (put 'real-part '(polar) real-part)
  (put 'imag-part '(polar) imag-part)
  (put 'magnitude '(polar) magnitude)
  (put 'angle '(polar) angle)
  (put 'make-from-real-imag 'polar
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'polar
       (lambda (r a) (tag (make-from-mag-ang r a))))
  (put 'eq?   '(polar polar) eq?)
  (put '=zero? '(polar) =zero?)
  'done)
(define (magnitude z)
  (apply-generic 'magnitude z))

(define (install-complex-package)
  ;; imported procedures from rectangular and polar packages
  (define (make-from-real-imag x y)
    ((get 'make-from-real-imag 'rectangular) x y))
  ;; internal procedures
  (define (add-complex z1 z2)
    (make-from-real-imag (+ (real-part z1) (real-part z2))
                         (+ (imag-part z1) (imag-part z2))))
  (define (sub-complex z1 z2)
    (make-from-real-imag (- (real-part z1) (real-part z2))
                         (- (imag-part z1) (imag-part z2))))
  (define (mul-complex z1 z2)
    (make-from-mag-ang (* (magnitude z1) (magnitude z2))
                       (+ (angle z1) (angle z2))))
  (define (div-complex z1 z2)
    (make-from-mag-ang (/ (magnitude z1) (magnitude z2))
                       (- (angle z1) (angle z2))))
   
  ;; interface to rest of the system
  (define (tag z) (attach-tag 'complex z))
  (put 'add '(complex complex)
       (lambda (z1 z2) (tag (add-complex z1 z2))))
  (put 'sub '(complex complex)
       (lambda (z1 z2) (tag (sub-complex z1 z2))))
  (put 'mul '(complex complex)
       (lambda (z1 z2) (tag (mul-complex z1 z2))))
  (put 'div '(complex complex)
       (lambda (z1 z2) (tag (div-complex z1 z2))))
  (put 'make-from-real-imag 'complex
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'eq? '(complex complex) eq?)
  (put '=zero? '(complex) =zero?)

  (put 'real-part '(complex) real-part)
  (put 'imag-part '(complex) imag-part)
  (put 'magnitude '(complex) magnitude)
  (put 'angle '(complex) angle)

  'done)

(define (make-complex-from-real-imag x y)
  ((get 'make-from-real-imag 'complex) x y))


(install-scheme-number-package)
(install-rational-package)
(install-rectangular-package)
(install-complex-package)

(define num (make-scheme-number 23))
(define rat-num (raise 34))
(define cmplx-num (raise rat-num))

(define c1 (make-complex-from-real-imag 2 3))
(define c2 (make-complex-from-real-imag 6 7))

(display (add c1 c2)) (newline)
(display (add c1 num)) (newline)
(display (add num c1)) (newline)
(display (add c1 rat-num)) (newline)


No comments: